
The COM Specification Chapter 8. Security

1Security
There are two distinguishable categories of security provided by COM. The first form is termed
Activation Security, and it dictates how new objects are started, how new and existing objects are
connected to, and how certain public services, such as the Class Table and the Running Object Table are
secured. The second form is Call Security, which dictates how security operates at the call level between
an established connection from a client to an object (server).
Aspects of the security API are necessarily platform dependent. The Windows versions are shown for
reference. Complete interoperability is supported by the user of common, installable authenticators.
COM on Windows will support at least Windows NT, Novell Netware, and DCE Kerberos security.
The remainder of this chapter describes these two forms of COM security in detail.

1.1Activation Security
As described in previous chapters, objects are exposed to clients either statically, by configuring a
persistent registry with information about the server code the Service Control Manager launches to
retrieve an object, or dynamically, through publishing an object, such as a class object via
CoRegisterClassObject or a running object via IRunningObjectTable::Register. Accordingly, there are two
aspects to activation security, one static (or automatic) form, and one dynamic form.
Activation security is automatically applied by the Service Control Manager of a particular machine.
Upon receipt of a request to retrieve an object, the Service Control Manager checks the request against
security information stored either within its registry or gathered dynamically from objects and stored
within its internal tables.

1.1.1Registry Configuration
All Service Control Managers should offer a level of simple registry-driven configurability for use
administering classes of a machine and for specific user accounts on that machine. The following tables
contain suggested configuration variables and a description of their Win32 implementation as
elaboration.
Machine Wide

Settings
Use Win32 Implementation

Allow
Activation

Boolean enables and disables
activation on a machine-wide
basis.

HKLM1\Software\Network OLE\Enabled = [0 | 1]

Per-Class
Security

Establishes automatic activation
security for a specific class
registered for use by any users
on this machine.

HKCC2\CLSID\{…}\ActivationSecurity is secured.3

HKCC\CLSID\{…}\FindActivationSecurityAt = {clsid} points
to a class with an \ActivationSecurity secured key.

Default Class
Security

Establishes automatic activation
security for any classes without
per-class security registered for
use by any user on this
machine.

HKLM\Software\Network OLE\DefaultActivationSecurity is
secured.

Default ROT
Security

Defines default security on
objects placed in the Running
Object Table of this machine by
any user.

HKLM\Software\Network OLE\DefaultROTSecurity is
secured.

1 Shorthand for HKEY_LOCAL_MACHINE, the section of the registry containing machine-wide software configuration
information. Typically holds configuration information used by server applications that are not running as a particular user but
rather on behalf of the system.

2 Shorthand for HKEY_COMMON_CLASSES, the section of the registry containing machine-wide class information (mappings
between CLSID’s and DLL/EXE names).

3 Under Win32, when a key is secured the act of retrieving its value performs an access check against the security descriptor
that guards it. Therefore, the SCM’s retrieval of the value of a secure key causes an implicit access check.

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

Per-User
Settings

Use Win32 Implementation

Allow
Activation

Boolean enables and disables
all activation for a particular
user on this machine.

HKCU4\Software\Network OLE\Enabled = [0 | 1]

Per-Class
Security

Establishes automatic activation
security for a specific class
registered for use by a
particular user on this machine.

HKCR5\CLSID\{…}\ActivationSecurity is secured.
HKCR\CLSID\{…}\FindActivationSecurityAt = {clsid} points
to a class with an \ActivationSecurity secured key.

Default Class
Security

Establishes automatic activation
security for any classes without
per-class security registered for
use by a particular user on this
machine.

HKCU\Software\Network OLE\DefaultActivationSecurity is
secured.

Default ROT
Security

Defines default security on
objects placed in the Running
Object Table of this machine by
a particular user.

HKCU\Software\Network OLE\DefaultROTSecurity is
secured.

1.1.2IActivationSecurity Interface

The IActivationSecurity interface is exposed by objects which register themselves via CoRegisterClassObject
and IRunningObjectTable::Register in order to secure access to the tables in which these objects are
registered, as described above.

interface IActivationSecurity : IUnknown {
HRESULT GetSecurityDescriptor(SECURITY_DESCRIPTOR** ppSecDesc);
};

IActivationSecurity::GetSecurityDescriptor
HRESULT IActivationSecurity::GetSecurityDescriptor(ppSecDesc);
Retrieves the security descriptor associated with this object. This security descriptor is used to control
access to this object pointer in system-maintained tables.
Argument Type Description
ppSecDesc SECURITY_DESCRIPTOR** Location in which to return a pointer to the security

descriptor for activation or binding to this object.
Returns S_OK Success. *ppSecDesc refers to a valid SECURITY_DESCRIPTOR.

E_INVALIDARG One or more arguments are invalid.

4 Shorthand for HKEY_CURRENT_USER, the section of the registry containing per-user software configuration information.
Typically holds configuration information used by applications that are running on behalf of a particular user.

5 Shorthand for HKEY_CLASSES_ROOT, the section of the registry containing per-user class information (mappings between
CLSID’s and DLL/EXE names).

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

1.1.3Applying Activation Security
The following table outlines how activation security is applied to requests to the Service Control
Manager.

Request Action
CoGetClassObject or
CoCreateInstance of
a non-running
class X

· Check “HKLM\Software\Network OLE\Enabled”. Fail the request if zero.
· Check ”HKCU\Software\Network OLE\Enabled”. Fail the request if zero.
· If class is registered in HKCR, follow ”HKCR\CLSID\{…}\FindActivationSecurityAt =

{…}” until an ”HKCR\CLSID\{…}\ActivationSecurity” key is found. If these keys
do not exist, use ”HKCU\Software\Network OLE\Default Activation Security”.
Check the request against the security on this key.

· Otherwise, if class is registered in HKCC, follow ”HKCC\CLSID\{…}\
FindActivationSecurityAt = {…}” until an ”HKCC\CLSID\{…}\ActivationSecurity”
key is found. If these keys do not exist, use ”HKLM\Software\Network OLE\
Default Activation Security”. Check the request against the security on this
key.

CoGetClassObject or
CoCreateInstance of
a running class Y

· Check “HKLM\Software\Network OLE\Enabled”. Fail the request if zero.
· Check ”HKCU\Software\Network OLE\Enabled”. Fail the request if zero.
· Check the request against the SECURITY_DESCRIPTOR available from

CoRegisterClassObject(CLSID_Y, …). This will be either the value returned
by the class object’s IactivationSecurity::GetSecurityDescriptor at the time of
CoRegisterClassObject or will have been taken from ”HKCU\Software\Network
OLE\DefaultActivationSecurity” or “HKLM\Software\Network OLE\
DefaultActivationSecurity” at the time of CoRegisterClassObject if the class
object did not support IActivationSecurity.

Running Object Table · Check “HKLM\Software\Network OLE\Enabled”. Fail the request if zero.
· Check ”HKCU\Software\Network OLE\Enabled”. Fail the request if zero.
· Before performing any operation against a ROT entry (i.e.,

IRunningObjectTable::Revoke, IRunningObjectTable::IsRunning,
IRunningObjectTable::GetObject, IRunningObjectTable::NoteTimeChange,
IRunningObjectTable::GetTimeOfLastChange, or when including an entry in an
IEnumMoniker::Next of an IEnumMoniker returned from
IRunningObjectTable::EnumRunning), check the call against the
SECURITY_DESCRIPTOR available from IRunningObjectTable::Register. This will
be either the value returned by the object’s
IActivationSecurity::GetSecurityDescriptor at the time of IRunningObjectTable::Register
or will have been taken from ”HKCU\Software\Network OLE\DefaultROTSecurity” or
“HKLM\Software\Network OLE\DefaultROTSecurity” at the time of
IRunningObjectTable::Register if the object did not support IActivationSecurity.

1.2 Call Security
COM provides two mechanisms to secure calls. The first mechanism is similar to DCE-RPC: COM
provides APIs that applications may use do their own security checking. The second mechanism is done
automatically by the COM infrastructure. If the application provides some setup information, COM will
make all the necessary checks to secure the application. This automatic mechanism does security
checking for the process, not for individual objects or methods. If an application wants more fine grained
security, it performs its own checking. However, the two mechanisms are not exclusive: an application
may ask COM to perform automatic security checking and then perform its own.
COM call security services are divided into three categories: general APIs called by both clients and
servers, new interfaces on client proxies, and server-side APIs and call-context interfaces. The general
APIs allow the automatic security mechanism to be initialized and automatic authentication services to
be registered. The proxy interfaces allow the client to control the security on calls to individual
interfaces. The server APIs and interfaces allow the server to retrieve security information about a call
and to impersonate the caller.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

In a typical scenario, the client queries the object for IClientSecurity, which is implemented locally by the
remoting layer. The client uses IClientSecurity to control the security of individual interface proxies on the
object prior to making a call on one of the interfaces. When a call arrives at the server, the server may
call CoGetCallContext to retrieve an IServerSecurity interface. IServerSecurity allows the server to check the
client’s authentication and to impersonate the client, if needed. The IServerSecurity object is valid for the
duration of the call. CoInitializeSecurity allows the client to establish default call security for the process,
avoiding the use of IClientSecurity on individual proxies. CoInitializeSecurity and CoRegisterAuthenticationServices
allow a server to register automatic authentication services for the process.
Implementations of QueryInterace must never check ACLs. COM requires that an object which supports a
particular IID always return success when queried for that IID. Aside from the requirement, checking
ACLs on QueryInterface does not provide any real security. If client A legally has access to interface IFoo,
A can hand it directly to B without any calls back to the server. Additionally, OLE caches interface
pointers and will not call QueryInterface on the server every time a client does a query.
Each time a proxy is created, COM sets the security information to default values, which are the same
values used for automatic security.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

1.2.1General Call Security APIs

RPC_C_AUTHN Constants
Value Description
RPC_C_AUTHN_LEVEL_NONE Performs no authentication.
RPC_C_AUTHN_LEVEL_CONNECT Authenticates only when the client establishes a relationship

with the server. Datagram transports always use
RPC_AUTHN_LEVEL_PKT instead.

RPC_C_AUTHN_LEVEL_CALL Authenticates only at the beginning of each remote procedure
call when the server receives the request. Datagram transports
use RPC_C_AUTHN_LEVEL_PKT instead.

RPC_C_AUTHN_LEVEL_PKT Authenticates that all data received is from the expected client.
RPC_C_AUTHN_LEVEL_PKT_INTEGRITY Authenticates and verifies that none of the data transferred

between client and server has been modified.
RPC_C_AUTHN_LEVEL_PKT_PRIVACY Authenticates all previous levels and encrypts the argument

value of each remote procedure call.

RPC_C_IMP Constants
Value Description
RPC_C_IMP_LEVEL_ANONYMOUS The client is anonymous to the server. The server process cannot

obtain identification information about the client and it cannot
impersonate the client.

RPC_C_IMP_LEVEL_IDENTIFY The server can obtain the client’s identity. The server can
impersonate the client for ACL checking but cannot access system
objects as the client. This information is obtained when the
connection is established, not on every call.

RPC_C_IMP_LEVEL_IMPERSONATE The server process can impersonate the client's security context while
acting on behalf of the client. This information is obtained when the
connection is established, not on every call.

RPC_C_IMP_LEVEL_DELEGATE The server process can impersonate the client's security context while
acting on behalf of the client. The server process can also make
outgoing calls to other servers while acting on behalf of the client.
This information is obtained when the connection is established, not
on every call.

CoInitializeSecurity
HRESULT CoInitializeSecurity(pSecDesc, AuthnLevel, Reserved);
Initializes the security layer.

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

Argument Type Description
pSecDesc SECURITY_DESCRIPTOR* This parameter contains two ACLs. The discretionary ACL

indicates who is allowed to call this process and who is explicitly
denied. The system ACL contains audit information. COM will write
an audit entry for each account listed in the system ACL if the
administrator for the machine has turned on auditing of COM calls on
the machine. A NULL SACL implies no auditing. A SACL with no ACEs
also implies no auditing. A NULL DACL will allow calls from anyone.
A DACL with no ACEs allows no access. If the application passes a
NULL security descriptor, COM will construct one that allows calls
from the current user and local system. All calls will be audited.
COM does not actually audit every call. It only audits new
connections. COM will hold a pointer to the security descriptor until
the last call to CoUninitialize completes. The descriptor and its
components may be allocated any way the application desires, but it
may not be freed until after the application uninitializes COM.

AuthnLevel ULONG This parameters defines the security level and impersonation level
used by automatic security. It may contain one of the values from
each of the RPC_C_AUTHN and RPC_C_IMP constants OR’d together.
Additionally, the value RPC_C_AUTHN_MUTUAL may be OR’d in. This
value causes the authentication service to guarantee that the client can
find out the login account of the server securely. When calls arrive,
they must be at least as high as the specified security level and
impersonation level. If not, COM will automatically fail the call.
Outgoing calls will be made at the specified security level or higher if
COM has a hint from the server. The impersonation level will always
be set as specified and not negotiated. Dynamic impersonation is not
supported.

Reserved void* This parameter is reserved for future use. It must be set to NULL.
Returns S_OK Success.

E_INVALIDARG One or more arguments are invalid.

CoQueryAuthenticationServices
HRESULT CoQueryAuthenticationServices(pcbAuthSvc, adwAuthSvc);
Returns a list of the authentication services that are installed on the machine. The list can be used as
input to CoRegisterAuthenticationService. Different authentication services support different levels of
security. For example, NTLMSSP does not support delegation or mutual authentication while Kerberos
does. The application is responsible for only registering authentication services that provide the features
the application needs. There is no way to query which services have been registered with
CoRegisterAuthenticationService.
Argument Type Description
pcbAuthSvc DWORD* Returns a count of the authentication services supported on the

machine.
adwAuthSvc DWORD** Returns a list of authentication services supported on the machine.

The enumeration of authentication services is in rpcdce.h.
Authentication services that are not currently in the enumeration may
be installed on a machine without upgrading the operating system.
The list is allocated by CoTaskMemAlloc. The application must free the
list by calling CoTaskMemFree.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.
E_OUTOFMEMORY Insufficient memory to create the adwAuthSvc out-parameter.

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

CoRegisterAuthenticationService
HRESULT CoRegisterAuthenticationServices(cbauthSvc, asAuthSvc);
This API sets the list of authentication services COM will use to authenticate incoming calls. If a call
arrives with a different authentication service, the call will fail. Registering authentication services does
not prevent the arrival of unsecure calls (i.e., calls with no authentication service). This API can only be
called before any interfaces are marshaled. Thus servers must call this if they want security. This call is
not useful for clients (unless they are also servers).
This API can only be called once.
An application cannot call both CoInitializeSecurity and CoRegisterAuthenticationService.
Argument Type Description
cbAuthSvc DWORD Specify the number of authentication services in the list asAuthSvc.
asAuthSvc SOLE_AUTHENTICATION_SERVICE* An array of authentication services to register. The

authentication services are enumerated in rpcdce.h. COM copies the
list. If the principal name is NULL, COM will assume the current user
id. A NULL principal name will work for NTLMSSP and Kerberos. It
may or may not work for other authentication services.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

1.2.2IClientSecurity Interface
 IClientSecurity gives the client control over the call-security of individual interfaces on a remote object.
All proxies generated by the COM MIDL compiler support the IClientSecurity interface. If QueryInterface for
IClientSecurity fails, either the object is implemented in-process or it is remoted by a custom marshaler
which does not support security (a custom marshaler may support security by offering the IClientSecurity
interface to the client). The proxies passed as parameters to an IClientSecurity method must be from the
same object as the IClientSecurity interface.

interface IClientSecurity : IUnknown {
HRESULT QueryBlanket(void* pProxy, DWORD* pcbAuthnSvc, SOLE_AUTHENTICATION_SERVICE* pasAuthnSvc,

RPC_AUTH_IDENTITY_HANDLE** ppAuthInfo, DWORD* AuthnLevel);
HRESULT SetBlanket(void* pProxy, DWORD AuthnSvc, WCHAR* ServerPrincName, RPC_AUTH_IDENTITY_HANDLE* pAuthInfo,

DWORD AuthnLevel, DWORD AuthzSvc);
HRESULT CopyProxy(void* pProxy, REFIID riid, void** ppCopy);
};

IClientSecurity::QueryBlanket
HRESULT IClientSecurity::QueryBlanket(pProxy, pcbAuthnSvc, pasAuthnSvc, ppAuthInfo,

AuthnLevel);
This method returns authentication information. This method is called by the client to find out what
authentication information COM will use on calls made from the specified proxy.

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

Argument Type Description
pProxy void* This parameter indicates the proxy to query.
pcbAuthnSvc DWORD* This parameter indicates the number of entries in the array pasAuthSvc.
pasAuthnSvc SOLE_AUTHENTICATION_SERVICE* This parameter is an array of authentication service,

principal name pairs. The first entry is the one that COM will use to
make calls to the server. The array is allocated with CoTaskMemAlloc
and the application must free it by calling CoTaskMemFree.

ppAuthInfo RPC_AUTH_IDENTITY_HANDLE** This parameter returns the value passed to
CoSetProxyAuthenticationInfo. It may be NULL if you do not care.

AuthnLevel DWORD* This parameter returns the current authentication level. It may be
NULL if you do not care.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.
E_OUTOFMEMORY Insufficient memory to create the pasAuthnSvc out-parameter.

IClientSecurity::SetBlanket
HRESULT IClientSecurity::SetBlanket(pProxy, AuthnSvc, ServerPrincName, pAuthInfo, AuthnLevel,

AuthzSvc);
This method sets the authentication information that will be used to make calls on the specified proxy.
The values specified here override the values chosen by automatic security. Calling this method changes
the security values for all other users of the specified proxy. Use IClientSecurity::CopyProxy to make a
private copy.
By default the authentication service and principal name is set to a list of authentication service and
principal name pairs that were registered on the server. When this method is called COM will forget the
default list. By default COM will try one principal name from the list of authentication services available
on both machines. It will not retry if that principal name fails.
If pAuthInfo is not set, it defaults to the logged in id. AuthnLevel and AuthzSvc default to the values specified
to CoInitializeSecurity. If CoInitializeSecurity is not called, they default to RPC_C_AUTHN_LEVEL_NONE and
RPC_C_AUTHZ_NONE.
Security information will often be ignored if set on local interfaces. For example, it is legal to set
security on the IClientSecurity interface. However, since that interface is supported locally, there is no need
for security. IUnknown and IMultiQuery are special cases. The local implementation makes remote calls to
support these interfaces. The local implementation will use the security settings for those interfaces.

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

Argument Type Description
pProxy void* This parameter indicates the proxy to set.
AuthnSvc DWORD This parameter indicates the authentication service. It may be

RPC_C_AUTHN_NONE if no authentication is required. It may be
RPC_C_AUTHN_DONT_CHANGE if you do not want to change the
current value.

ServerPrincName WCHAR* This parameter indicates the server principal name. It may be NULL if
you don’t want to change the current value.

pAuthInfo RPC_AUTH_IDENTITY_HANDLE* This parameter sets the identity of the client. It is
authentication service specific. Some authentication services allow
the application to pass in a different user name and password. COM
keeps a pointer to the memory passed in until COM is uninitialized or
a new value is set. If NULL is specified COM uses the current identity
(whether the logged in or impersonated id).

AuthnLevel DWORD This parameter specifies the authentication level. It may be
RPC_C_AUTHN_LEVEL_DONT_CHANGE if you do not want to change the
current value.

AuthzSvc DWORD This parameter specifies the authorization level. It may be
RPC_C_AUTHZ_DONT_CHANGE is you do not want to change the
current value.

Returns S_OK Success.
E_INVALIDARG One or more arguments is invalid.

IClientSecurity::CopyProxy
HRESULT IClientSecurity::CopyProxy(pProxy, riid, ppCopy)
This method makes a copy of the specified proxy. Its authentication information may be changed without
affecting any users of the original proxy. The copy has the default values for the authentication
information. The copy has one reference and must be released.
Local interfaces may not be copied. IUnknown, IMultiQuery, and IClientSecurity are examples of existing local
interfaces.
Argument Type Description
pProxy void* This parameter indicates the proxy to copy.
riid REFIIID Identifies the proxy to return.
ppCopy void** The copy is returned to this parameter.
Returns S_OK Success.

E_NOINTERFACE The interface riid is not supported by this object.

1.2.3Client APIs for Call Security

CoQueryProxyAuthenticationInfo
HRESULT CoQueryProxyAuthenticationInfo(pProxy, pcbAuthnSvc, pasAuthnSvc, ppAuthInfo,

pAuthnLevel);
Returns the authentication information used to make calls on the specified proxy. This function
encapsulates the following sequence of common calls:

pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
pcs->QueryBlanket(pProxy, AuthnSvc, ServerPrincName, pAuthInfo, AuthnLevel);
pcs->Release();

DRAFT Page: 9 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

Argument Type Description
see IClientSecurity::QueryBlanket

CoSetProxyAuthenticationInfo
HRESULT CoSetProxyAuthenticationInfo(pProxy, AuthnSvc, ServerPrincName, pAuthInfo,

AuthnLevel, AuthzSvc);
Sets the authentication information that will be used to make calls on the specified proxy. This function
encapsulates the following sequence of common calls:

pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
pcs->SetBlanket(pProxy, AuthnSvc, ServerPrincName, pAuthInfo, AuthnLevel);
pcs->Release();

Argument Type Description
see IClientSecurity::SetBlanket

CoCopyProxy
HRESULT CoCopyProxy(pProxy, riid, ppCopy);
Makes a copy of the specified proxy. This function encapsulates the following sequence of common
calls:

pProxy->QueryInterface(IID_IClientSecurity, (void**)&pcs);
pcs->CopyProxy(pProxy, riid, ppCopy);
pcs->Release();

Argument Type Description
see IClientSecurity::CopyProxy

1.2.4IServerSecurity Interface
IServerSecurity may be used to impersonate the client during a call, even on other threads within the server.
IServerSeciruty:QueryBlanket and IServerSecurity::ImpersonateClient may only be called before the call
completes. IServerSecurity::RevertToSelf may be called at any time. The interface pointer must be released
when it is no longer needed. Unless the server wishes to impersonate the client on another thread, there is
not reason to keep an IServerSecurity past the end of the call, since it will at that point no longer support
IServerSecurity::QueryBlanket.

interface IServerSecurity : IUnknown {
HRESULT QueryBlanket(RPC_AUTHZ_HANDLE* Privs, WCHAR** ServerPrincName, DWORD* AuthnLevel, DWORD* AuthnSvc,

DWORD* AuthzSvc);
HRESULT ImpersonateClient(void);
HRESULT RevertToSelf(void);
};

IServerSecurity::QueryBlanket
HRESULT IServerSecurity::QueryBlanket(Privs, ServerPrincName, AuthnLevel, AuthnSvc, AuthzSvc);
This method is used by the server to find out about the client that invoked one of its methods.
CoGetCallContext with IID_ISeverSecurity returns an IServerSecurity interface for the current call on the current
thread. This interface pointer may be used on any thread and calls to it may succeed until the call
completes.

Copyright © 1995 Microsoft Corporation Page: 10 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

Argument Type Description
Privs RPC_AUTHZ_HANDLE* Returns a pointer to a handle to the privilege information for

the client application. The format of the structure is authentication
service specific. The application should not write or free the memory.
The information is only valid for the duration of the current call. NULL
may be passed if the application is not interested in this parameter.

ServerPrincName WCHAR* This parameter indicates the principal name the client specified. It is
a copy allocated with CoTaskMemAlloc. The application must call
CoTaskMemFree to release it. NULL may be passed if the application is
not interested in this parameter.

AuthnLevel DWORD* This parameter indicates the authentication level. NULL may be passed
if the application is not interested in this parameter.

AuthnSvc DWORD* This parameter indicate the authentication service the client specified.
NULL may be passed if the application is not interested in this
parameter.

AuthzSvc DWORD* This parameter indicates the authorization service. NULL may be
passed if the application is not interested in this parameter.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.
E_OUTOFMEMORY Insufficient memory to create one or more out-parameters.

IServerSecurity::ImpersonateClient
HRESULT IServerSecurity::ImpersonateClient();
This method allows a server to impersonate a client for the duration of a call. The server may
impersonate the client on any secure call at identify, impersonate, or delegate level. At identify level, the
server may only find out the clients name and perform ACL checks; it may not access system objects as
the client. At delegate level the server may make off machine calls while impersonating the client. The
impersonation information only lasts till the end of the current method call. At that time
IServerSecurity::RevertToSelf will automatically be called if necessary.
Impersonation information is not normally nested. The last call to any Win32 impersonation mechanism
overrides any previous impersonation. However, in the apartment model, impersonation is maintained
during nested calls. Thus if the server A receives a call from B, impersonates, calls C, receives a call
from D, impersonates, reverts, and receives the reply from C, the impersonation will be set back to B, not
A.
If IServerSecurity::ImpersonateClient is called on a thread other then the one that received the call, the
impersonation will not automatically be revoked. It will be valid past the end of the call. However,
IServerSecurity::ImpersonateClient must be called before the original call completes.
Argument Type Description
Returns S_OK Success.

E_FAIL The caller can not impersonate the client identified by this
ISeverSecurity object.

IServerSecurity::RevertToSelf
HRESULT IServerSecurity::RevertToSelf();
This method restores the authentication information on a thread to the process’s identity.
In the apartment model, IServerSecurity::RevertToSelf only affects the current method invocation. If there
are nested method invocations, they each may have there own impersonation and COM will correctly
restore the impersonation before returning to them (regardless of whether or not
IServerSecurity::RevertToSelf was called).

DRAFT Page: 11 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 8. Security The COM Specification

IServerSecurity::RevertToSelf may be called on threads other then the one that received the call.
IServerSecurity::RevertToSelf may be called after the call completes. Calls to IServerSecurity::RevertToSelf that
are not matched with an IServerSecurity::ImpersonateClient call will fail.
Argument Type Description
Returns S_OK Success.

E_FAIL This call was not preceded by a call to
IServerSecurity::ImpersonateClient on this thread of execution.

1.2.5Sever APIs for Call Security
The following APIs are provided to give the server access to any contextual information of the caller and
to encapsulate common sequences of security checking and caller impersonation.

CoGetCallContext
HRESULT CoGetCallContext(riid, ppv);
Retrieves the context of the current call on the current thread. riid specifies the interface on the context to
retrieve. Currently only IServerSecurity is available from the default call-context (see ISeverSecurity for
details).
Argument Type Description
riid REFIID Identifies the interface to return.
ppv void** Returns an interface for the current call.
Returns S_OK Success.

E_NOINTERFACE The call context does not support the interface identified by riid.

CoSetCallContext
HRESULT CoSetCallContext(punk);
Establishes the call context for the current call, overriding the default call context object normally
available via CoGetCallContext.
This function is provided primarily for objects performing custom marshaling. Before transferring control
from their stub or IPC mechanism to the server-side code, a custom marshaler may establish the call
context via CoSetCallContext so that subsequent objects can be written to take advantage of call-level
security or other caller-specific contextual information in a transport neutral fashion, e.g. without regard
to whether an object between them and the client was remoted via custom marshaling.
The call context reverts automatically at the end of each call. Furthermore, a custom marshaling layer
which calls CoSetCallContext prior to entering the server need not call CoSetCallContext(NULL) after each
returning call.
A second call to CoSetCallContext with a non-NULL punk will Release the first punk and AddRef the second.
Argument Type Description
punk IUnknown* When non-NULL, the IUnknown which is to be QueryInterface’d for the

requested call context interface by subsequent calls to CoGetCallContext
during the span of the current call. This interface is AddRef’d prior to
returning. When NULL, resets the call context to the COM-provided
default for the current call.

Returns S_OK Success.
E_INVALIDARG One or more arguments are invalid.

Copyright © 1995 Microsoft Corporation Page: 12 DRAFT
All Rights Reserved

The COM Specification Chapter 8. Security

CoQueryClientAuthenticationInfo
HRESULT CoQueryClientAuthenticationInfo(Privs, ServerPrincName, AuthnLevel, AuthnSvc,

AuthzSvc);
Used by the server to find out about the client that invoked the method executing on the current thread.
This function encapsulates the following sequence of common calls:

CoGetCallContext(IID_IServerSecurity, (void**)&pss);
pss->QueryBlanket(Privs, ServerPrincName, AuthnLevel, AuthnSvc, AuthzSvc);
pss->Release();

Argument Type Description
see IServerSecurity::QueryBlanket

CoImpersonateClient
HRESULT CoImpersonateClient();
Allows the server to impersonate the client of the current call for the duration of the call. This function
encapsulates the following sequence of common calls:

CoGetCallContext(IID_IServerSecurity, (void**)&pss);
pss->ImpersonateClient();
pss->Release();

Argument Type Description
see IServerSecurity::ImpersonateClient

CoRevertToSelf
HRESULT CoRevertToSelf();
Restores the authentication information on a thread of execution to its previous identity. This function
encapsulates the following sequence of common calls:

CoGetCallContext(IID_IServerSecurity, (void**)&pss);
pss->RevertToSelf();
pss->Release();

Argument Type Description
see IServerSecurity::RevertToSelf

DRAFT Page: 13 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

	1 Security
	1.1 Activation Security
	1.1.1 Registry Configuration
	1.1.2 IActivationSecurity Interface
	IActivationSecurity::GetSecurityDescriptor

	1.1.3 Applying Activation Security

	1.2 Call Security
	1.2.1 General Call Security APIs
	RPC_C_AUTHN Constants
	RPC_C_IMP Constants
	CoInitializeSecurity
	CoQueryAuthenticationServices
	CoRegisterAuthenticationService

	1.2.2 IClientSecurity Interface
	IClientSecurity::QueryBlanket
	IClientSecurity::SetBlanket
	IClientSecurity::CopyProxy

	1.2.3 Client APIs for Call Security
	CoQueryProxyAuthenticationInfo
	CoSetProxyAuthenticationInfo
	CoCopyProxy

	1.2.4 IServerSecurity Interface
	IServerSecurity::QueryBlanket
	IServerSecurity::ImpersonateClient
	IServerSecurity::RevertToSelf

	1.2.5 Sever APIs for Call Security
	CoGetCallContext
	CoSetCallContext
	CoQueryClientAuthenticationInfo
	CoImpersonateClient
	CoRevertToSelf

